Cropland Interpretations In this subsection, information is available about crop yields estimates (for major crops) and soil erosion factors. ## **Crop Yield Estimates** The average yields per acre that can be expected of the principal crops under a high level of management are shown in the crop yield report. In any given year, yields may be higher or lower than those indicated in the report because of variations in rainfall and other climatic factors. The land capability classification of map units in the survey area also is shown in the crop yield report. The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations are also considered. The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss. For yields of irrigated crops, it is assumed that the irrigation system is adapted to the soils and to the crops grown, that good-quality irrigation water is uniformly applied as needed, and that tillage is kept to a minimum. The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change. Crops other than those shown in the report are grown in the county subset, but estimated yields are not listed because the acreage of such crops is small. The local office of the Natural Resources Conservation Service or the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops. To obtain crop yields and land capability class information, click on the link **Nonirrigated Yields by Map Unit.** #### **Erosion Factors** Soil erodibility (K) and soil-loss tolerance (T) factors are used in an equation that predicts the amount of soil lost through water erosion in areas of cropland. The procedure for predicting soil loss is useful in guiding the selection of soil and water conservation practices. To obtain an erosion factors report, click on the link **RUSLE2 Related**Attributes ## Soil Erodibility (K) Factor The soil erodibility (K) factor indicates the susceptibility of a soil to sheet and rill erosion by water. The soil properties that influence erodibility are those that affect the infiltration rate, the movement of water through the soil, and the water storage capacity of the soil and those that allow the soil to resist dispersion, splashing, abrasion, and the transporting forces of rainfall and runoff. The most important soil properties are the content of silt plus very fine sand, the content of sand coarser than very fine sand, the content of organic matter, soil structure, and permeability. # Fragment-Free Soil Erodibility (Kf) Factor This is one of the factors used in the Revised Universal Soil Loss Equation. It shows the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size. ### **Soil-Loss Tolerance (T) Factor** The soil-loss tolerance (T) factor is an estimate of the maximum annual rate of soil erosion that can occur over a sustained period without affecting crop productivity. The rate is expressed in tons of soil loss per acre per year. Ratings of 1 to 5 are used, depending on soil properties and prior erosion. The criteria used in assigning a T factor to a soil include maintenance of an adequate rooting depth for crop production, potential reduction of crop yields, maintenance of water-control structures affected by sedimentation, prevention of gullying, and the value of nutrients lost through erosion. ### **Wind Erodibility Groups** Wind erodibility is directly related to the percentage of dry, nonerodible surface soil aggregates larger than 0.84 millimeter in diameter. From this percentage, the wind erodibility index (I) factor is determined. This factor is an expression of the stability of the soil aggregates, or the extent to which they are broken down by tillage and the abrasion caused by windblown soil particles. Soils are assigned to wind erodibility groups (WEG) having similar percentages of dry soil aggregates larger than 0.84 millimeter. Additional information about wind erodibility groups and K, T, and I factors can be obtained from local offices of the Natural Resources Conservation Service or the Cooperative Extension Service.